
Okanagan

COSC 123

Computer Creativ ity

Okanagan

COSC 123

Computer Creativ ity

Slides courtesy of Dr. Abdallah Mohamed.

Variables, Data Types,
and a bit of Math

COSC 123 – 2COSC 123 – 2

Announcements

¥ You should be able to:

¥ Define value, variable, and memory location

¥ Create and use variables of different data types

¥ recognize the naming rules and guidelines for variables.

¥ List and compare the data types in processing.

¥ Define and use the “color” type.

¥ Creating and using constants.

¥ Properly use math operators.

¥ Evaluate math expressions.

COSC 123 – 5COSC 123 – 5

Values, Variables, and Locations
¥ A value is a data item that is manipulated by the computer.

¥ A variable is the name that the programmer uses to refer to a
location in memory.

¥ A location has an address in memory and stores a value.

age

18
100

Location Variable

Address

Location
(box)

Value
Value (cute cat)

Variable
(label)petbox

COSC 123 – 6COSC 123 – 6

Values, Variables, and Locations
¥ Let’s say we want to store a number that represents the age.

¥ Step #1: Declare variable by giving it a NAME and a TYPE.

int age; // age can only store integers
n The computer allocates space for the variable in memory (at some

memory address). Every time we give the name age, the computer
knows what data item we mean.

¥ Step #2: Initialize the variable to have a starting value. E.g.,
age = 21;

¥ Step #3: Value stored in a location can be changed throughout the
program to whatever we want using assignment ("=" symbol).

age = age + 3;

Variable Name Lookup Table
Name Location Type
age 16 int

Memory
16
20
24

??? 21 24

COSC 123 – 7COSC 123 – 7

Variable Name
¥ A variable must have a NAME and a TYPE.

¥ Names (aka identifiers):
¥ are case sensitive (B is not the same as b)
¥ can be a sequence of characters that include only letters, digits,

underscores (_), and dollar signs ($).
¥ must start with a letter, an underscore (_), or a dollar sign ($).

n cannot start with a digit.
¥ can not be a reserved word.

n E.g. cannot be called double, true, false, or null.
¥ Naming guidelines

n can be of any length, but reasonable (readable) length is preferred.
n should start with a lower case letter.
n if more than one word, remove the spaces and capitalize all words

after the first one (e.g. my first car à myFirstCar)

COSC 123 – 8COSC 123 – 8

Variable Type
¥ A variable must have a name (identifier) and a type. Each type has a

valid range of values and uses a different amount of memory space.

¥ Note: Unlike JavaScript, where you don’t specify a type (i.e. just use
var), in Java (and Processing) you must specify the variable type.

Type
Size in

memory
Range

whole
numbers

byte 8 bits -27 to 27-1 (-128 to 127)
short 2 bytes -215 to 215-1 (-32768 to 32767)
int 4 bytes -231 to 231-1
long 8 bytes -263 to 263-1

real
numbers

float 4 bytes e.g. 17.345f
double 8 bytes e.g. 12452.212 (more accurate)

characters char 2 bytes e.g. 'a', '1‘and '?'
boolean boolean 1 byte true or false

COSC 123 – 9COSC 123 – 9

The String Type
¥ Strings are sequences of characters inside double quotes (i.e.

text in double quotes).

¥ Example:

¥ The first statement creates (defines) a variable and initializes its
value to “Abdallah Mohamed”.

¥ The second statement is assigns a new value to existing variable.

¥ The concatenation operator is used to combine two strings
into a single string. The notation is a plus sign '+'.

String personName = "Abdallah Mohamed";
personName = "John Smith";

String firstName = "Abdallah", lastName = "Mohamed";
String fullName = firstName + lastName;

COSC 123 – 10COSC 123 – 10

The Color Type
¥ Processing introduces a new data type called color which

stores color information. The value of a color variable can be set
by the color() function.

color red = color(255,0,0); // red in RGB mode
color navy = color(#443F76); // navy in hex notation (RGB)
colorMode(HSB,360,100,100);

color green = color(128,100,100);// green in HSB mode
color blue = color(#0011FF); // blue in hex notation (RGB)

background (navy); // navy background

fill(red);
rect(10,10,40,40); // red square

fill(green);
rect(50,50,40,40); // green square

fill(blue);
ellipse(75,25,30,30); // green square

red uses RGB as it was defined
before changing the color mode

blue uses RGB even though it was defined
after setting the color mode because blue
was defined using hex notation

COSC 123 – 11COSC 123 – 11

Example

Declaring and Initializing Variables
1

// Declaring Variables
double a; // Declare a to be a double variable
int x, y; // Declare x and y as integer variables

// Assignment Statements
a = 7.1; // Assign 7.1 to a;
x = 1 + 3; // assign 4 to x;
y = x + 2; // assign 6 to y;

// Declaring and Initializing in ONE Step
double a2 = 7.1;
int x2 = 1, y2 = 2;

COSC 123 – 12COSC 123 – 12

Example

Using Variables
2

¥ Here are two more examples of two variables x and y

int x; // declare a variable
x = 5; // initialize a variable – what is assignment ‘=’?
int y = 10; // declare and initialize a variable
println(x); // print value of x
x = 10; // overwrite old value
println("x " + x); //what is the output?

int x = 10, y; // y has no values yet
y = x; // y is 10 now
y = y + 1; // = does not mean equal, it means assignment.
println("x + y = " + (x + y)); //notice the output

COSC 123 – 13COSC 123 – 13

Constants
¥ Constants are similar to variables except that once initialized

they cannot change.
¥ To create a constant, use the keyword final before your

variable declaration.

¥ Naming Convention:
¥ Capitalize all letters in constants

n e.g. MAX, PI, SIZE
¥ Use underscores for multiple words.

n e.g. MAX_VALUE

Expressions

COSC 123 – 15COSC 123 – 15

The Assignment Statement
¥ An assignment statement changes the value of a variable.

¥ The variable on the left-hand side of the = is assigned the value
from the right-hand side.

¥ The value may be changed to a constant, to the result of an
expression, or to be the same as another variable.

¥ The values of any variables used in the expression are always their
values before the start of the execution of the assignment.

¥ Example: int A, B;
A = 5;
B = 10;
A = 10 + 6 / 2;
B = A;
A = 2*B + A - 5;

Question: What are the values of A and B?

COSC 123 – 16COSC 123 – 16

Expressions
¥ An expression is a sequence of operands and operators that

yield a result. An expression contains:
¥ operands - the data items being manipulated in the calculation

n e.g. 5, "Hello, World", myDouble
¥ operators - the operations performed on the operands

n e.g. +, -, /, *, % (modulus or remainder after integer division)

¥ An operator can be:
¥ unary - applies to only one operand

n e.g. d = -3.5; // “-” is a unary operator, 3.5 is the operand
¥ binary - applies to two operands

n e.g. d = 3 * 5.0; // “*” is binary operator, 3 and 5.0 are operands

¥ Integer Division:
¥ 5 / 2 if both operands are integers, the output is an integer 2
¥ 5.0 / 2 if at leas one operand is float, output is float 2.5

COSC 123 – 17COSC 123 – 17

ExerciseExercise

Division Operator
¥ What is the result of 25 / 4?

¥ How would you rewrite the expression if you wished the result to
be a floating-point number?

¥ Are the following statements correct? If so, show the output.

println("25 / 4 is " + 25 / 4);
println("25 / 4.0 is " + 25 / 4.0);
println("3 * 2 / 4 is " + 3 * 2 / 4);
println("3.0 * 2 / 4 is " + 3.0 * 2 / 4);

Self Assessment Questions…

COSC 123 – 18COSC 123 – 18

The Remainder Operator (%)
¥ The % operator returns the remainder of two numbers.

¥ Examples:
Operation Result

a) 14 % 6 2
b) -34 % 5 - 4 (matches numerator sign)

c) -34 % -5 - 4

d) 34 % -5 4
e) 5 % 1 0

f) 1 % 5 1
g) 3 % 0 runtime error. Can’t divide by zero

COSC 123 – 19COSC 123 – 19

Operator Precedence
¥ Each operator has its own priority similar to their priority in

regular math expressions:
1. Any expression in parentheses is evaluated first starting with the

inner most nesting of parentheses.

2. Unary + and unary - have the next highest priorities.

3. Multiplication and division (*, /, %) are next.

4. Addition and subtraction (+,-) are then evaluated.

COSC 123 – 20COSC 123 – 20

The ++ and -- Operators
¥ It is very common to subtract 1 or add 1 from the current value

of an integer variable.

¥ There are two operators which abbreviate these operations:
¥ ++ add one to the current integer variable
¥ - - subtract one from the current integer variable

¥ Example:
var j=0;

j++; // j = 1; Equivalent to j = j + 1;

j--; // j = 0; Equivalent to j = j - 1;

COSC 123 – 21COSC 123 – 21

Augmented Assignment
¥ The operators +, -, *, /, and % can be combined with the

assignment operator = to form augmented operators.

x += 5; //Equivalent to x = x + 5
x -= 5; //Equivalent to x = x - 5
x *= 5; //Equivalent to x = x * 5
x /= 5; //Equivalent to x = x / 5
x %= 5; //Equivalent to x = x % 5

COSC 123 – 22COSC 123 – 22

Summary
¥ The pre-class materials covered the following:

¥ Variables and Data types
n Primitive types: byte, short, int, long, float, double,

char, boolean

n New types: color

n String type

¥ Naming rules and guidelines (for variable and constants)

¥ Math operators and expressions.
n Binary operators: +, -, *, /, %

n Unary operators: -3, x++, y--

n Augmented assignment: -=, +=, /=, *=, %=

Variable Scope

COSC 123 – 24COSC 123 – 24

Variable Scope
¥ The scope of a variable is the part of the program where you

can access or use the variable.

¥ Local variables are those defined in functions and can be only
accessed inside this function.

¥ Global variables are those defined outside functions – all
functions can access global variables.

COSC 123 – 25COSC 123 – 25

Example

Variable Scope
1

int size = 10;

void setup(){
size(200,200);

}

void draw(){
int x = 100, y = 100;
rectMode(CENTER);
rect(x,y,size,size);

}

void keyPressed(){
size += 5;

}

Global variable:
Declared outside all functions.
ALL functions can access size

Local variables:
Declared within a function.
Only this function can access x and y

size increases when a key is
pressed, then draw uses the
new value of size.

This program increases the rectangle size every time a key is pressed.

COSC 123 – 26COSC 123 – 26

QuestionQuestion

Variable Scope
Why does this code have a
compile error?
A. We cannot have a variable

called size

B. We need to specify a type for

the variable y (i.e. int y = 100)

C. draw() and keyPressed()

cannot access x or y.

D. The variable size must be

defined as global variable.

E. Something else.

void setup(){
int x = 10, y = 10;
size(200,200);

}

void draw(){
int size = 50;
rect(x, y, size, size);

}

void keyPressed(){
x += 20;
y += 20;

}

Controlling Animations with Variables

Next group of slides are better and should be placed here

COSC 123 – 28COSC 123 – 28

Controlling Animations with Variables (1)
¥ Variables can be used to control many aspects of the your

animation.

¥ The key idea is to store some attributes of your sketch in global
variables and update them:

(a) every frame (e.g. x++ in the draw() method), and/or

(b) whenever an event happens (e.g. x=0 whenever a key is
pressed)

COSC 123 – 29COSC 123 – 29

Controlling Animations with Variables (2)
¥ Example attributes include

¥ Position
n Use variables, e.g. x and y, to store the position.

¥ Angle
n Use a variable to store an angle. Use that variable to transform the

shape coordinates using the rotate() function.
¥ Scale

n IDEA1: use a variable to store scale, and use it to transform
coordinates

n IDEA2: use variables to store scale and use it as a multiplicand to
control the size of the shape/item.

¥ Color
n Use variables to store color components.

¥ …etc

(a) updating attributes every frame

COSC 123 – 31COSC 123 – 31

Example

Moving Square
2

¥ Here, we use a global variable
x to control the x-position of the
square. The variable is
incremented in every frame.

¥ Question:
¥ What happens if we declare

and initialize x in
n A) setup() ?
n B) draw() ?

int x=0;

void setup(){

size(200,200);

}

void draw(){

background(100);

rect(x, 75, 50, 50);

x++;

}

COSC 123 – 32COSC 123 – 32

Example

Revolving Wheel
3

¥ Previously, you created the design
below.

¥ We can animate the angle of of the
rotation using a variable dr that is
updated in every frame.

¥ You try it now!
¥ No need to submit anything yet

to Canvas

float dr = 0;
void setup(){

size(300,300); strokeWeight(2);
}
void draw(){

background(0);
translate(150,150); // move origin to center
// outer rings
fill(0,0,150);stroke(0,0,255);ellipse(0,0,180,180);
fill(0); stroke(0,0,255); ellipse(0,0,160,160);
// green rectangles and red ellipses
noFill();
rotate(dr);
stroke(0,255,0); rect(0,0,80,40);
stroke(255,0,0); ellipse(0,0,80,30);
rotate(PI/2);
stroke(0,255,0); rect(0,0,80,40);
stroke(255,0,0); ellipse(0,0,80,30);
rotate(PI/2);
stroke(0,255,0); rect(0,0,80,40);
stroke(255,0,0); ellipse(0,0,80,30);
rotate(PI/2);
stroke(0,255,0); rect(0,0,80,40);
stroke(255,0,0); ellipse(0,0,80,30);
dr += 0.02;

}

COSC 123 – 33COSC 123 – 33

Example

Moving Objects at Given Speed
4

¥ A good idea to show moving objects
is to use two variables x and y for
the location, and add to them a
small displacement, speedX and
speedY, every frame.

¥ In the example, the object moves to
the right only.
¥ Q1: WHY?
¥ Q2: make the object move

upwards only.
¥ Q3: make the object move

diagonally.
¥ We will see later how to change the

speed in the runtime.

float x, y, diam = 16;
float speedX = 1, speedY = 0;

void setup(){
size(200,200);
x = 0;
y = height/2;

}

void draw(){
background(0);
ellipse(x, y, diam, diam);
x = x + speedX;
y = y + speedY;

}

COSC 123 – 34COSC 123 – 34

Example

Animating Size and Opacity
5

¥ Here, we control the circle using four
variables.
¥ radius and opacity change at the

end of each frame, causing the next
frame to appear differently.

¥ location (x,y) is not changed.

¥ Question: modify the code so that the
circle moves from the top-left corner to
the bottom-right corner.

float radius = 10, opacity = 255;
float x = 75, y = 75;

void setup() {
size(150, 150);
noStroke();

}

void draw() {
background(0);
fill(255, opacity);
ellipse(x, y, radius, radius);
radius++;
opacity--;

}

(b) updating attributes with events

COSC 123 – 36COSC 123 – 36

Example

Controlling Speed with Mouse & Key Events
6

¥ This examples initially draws a
rectangle in the middle of the
sketch

¥ Clicking the mouse button will
cause it to start moving left.

¥ Pressing a key on the keyboard
will cause it to start moving right.

int x = 75, speedX = 0;
void setup(){
size(400,200);

}
void draw(){
background(100);
rect(x, 75, 50, 50);
x += speedX;

}
void keyPressed(){
speedX = 2;

}
void mousePressed(){
speedX = -2;

}

COSC 123 – 37COSC 123 – 37

Example

Controlling Colors with Mouse & Key Events
7

¥ This examples initially draws a
black circle on a white
background.

¥ Clicking the mouse button
brightens a circle.

¥ Pressing a key on the keyboard
dims the background.

int background = 255, foreground = 0;

void setup() {
size(100, 100);

}

void draw() {
background(background);
fill(foreground);
ellipse(50,50,80,80);

}

void keyPressed() {
background -= 10;

}

void mousePressed() {
foreground += 10;

}

COSC 123 – 38COSC 123 – 38

Example

Panning the Sketch with the Mouse
7

int x=0, y=0;

void setup(){
size(200,200);

}
void draw(){
background(100);
translate(x,y);
rect(0,0,50,50);
ellipse(100,100,30,30);
line(10,100,100,50);

}

void mouseDragged(){
x += mouseX - pmouseX;
y += mouseY - pmouseY;

}

¥ When mouse is dragged, x and y are
updated with the relative mouse
displacement.
¥ i.e. the difference between current

mouse location and the previous mouse
location.

COSC 123 – 39COSC 123 – 39

Example

also Zooming…!
8 (Aside)

int x=0, y=0;
float scl = 1.0;
void setup(){
size(200,200);

}
void draw(){
background(100);
translate(x,y);
scale(scl);
rect(0,0,50,50);
ellipse(100,100,30,30);
line(10,100,100,50);

}
void mouseDragged(){
x += mouseX - pmouseX;
y += mouseY - pmouseY;

}
void mouseWheel(MouseEvent e){
scl -= e.getCount()/10.0;

}

¥ This is the same code as before
except that another variable is used
to zoom in and out (scale the sketch).

¥ This variable is updated based on the
mouse wheel rotation.
¥ The mouseWheel() function:

n This function is automatically
called whenever the mouse wheel
rotates.

n The e.getCount() returns 1 or -
1 every time the mouse wheel is
rotated up or down.

COSC 123 – 40COSC 123 – 40

Example

Moving/Dragging Items
9

¥ In this example, we have 4
variables to store the location
of the mouse.

¥ “moving” text is using the first
two which are set whenever
the mouse is moved

¥ “dragging” text is using the
dragX and dragY which are
set whenever the mouse is
dragged.

int moveX = 50, moveY = 50;
int dragX = 50, dragY = 50;
void setup() {
size(100, 100);
textAlign(CENTER);

}
void draw() {
background(0);
fill(255,125,0);
text("moving", moveX, moveY);
fill(0,255,0);
text("dragging", dragX, dragY);

}
void mouseMoved() { // Move the text "Moving"
moveX = mouseX;
moveY = mouseY;

}
void mouseDragged(){ // Move the text "Dragging"
dragX = mouseX;
dragY = mouseY;

}

End of Tuesday’s Class

Okanagan

COSC 123

Computer Creativ ity

Okanagan

COSC 123

Computer Creativ ity

Slides courtesy of Dr. Abdallah Mohamed.

Quick Tutorial on
Animations

COSC 123 – 43COSC 123 – 43

Key Idea 1: How to Animate “Things”
¥ A question is: how to animate “Things” in your sketch?

¥ “Things” are basically the attributes of different items such as the
color, location, transformation, size, etc.

¥ Here are the process you need to follow:
(1) Identify which attributes you want to animate (e.g. size, color,
location, etc.)

n you may want to use the PDE’s Tweak tool to help you identify the right
attribute.

(2) for each attribute you want to animate, create and initialize a global
variable.
(3) In draw(), use the global variables to represent the attributes.
(4) Change the value of your global variables either:

n in draw()
n For continuous animation (e.g. falling rain drops).

n in an event function (e.g. keyPressed())
n For interactive animations (e.g. controlling character position with keyboard)

COSC 123 – 44COSC 123 – 44

Example

Animation Tutorial 1
1

¥ Let’s say you have a white circle on a dark background.

¥ And let’s say we want two things to be animated:
¥ The background to get lighter
¥ The ball to move from left to right

void setup() {
size(600, 200);

}
void draw() {

background(80);
ellipse(25, 100, 50, 50);

}

COSC 123 – 45COSC 123 – 45

Example

Animation Tutorial 1, cont’d
1

int c = 80, x = 25;
void setup() {

size(600, 200);
}
void draw() {

background(80);
ellipse(25,100,50,50);

}

int c = 80, x = 25;
void setup() {

size(600, 200);
}
void draw() {

background(c);
ellipse(x,100,50,50);

}

Step (2) create two global
variables, one for each attributes.

Step (3) use the variables for
the attributes values

int c = 80, x = 25;
void setup() {

size(600, 200);
}
void draw() {

background(c);
ellipse(x,100,50,50);
x = x + 2;
c = c + 1;

}

Step (4) Update your
variables

void setup() {
size(600, 200);

}
void draw() {

background(80);
ellipse(25,100,50,50);

}

Step (1) Identify the attributes that we
should change, i.e. the background
color and the x-location of the ball.

COSC 123 – 46COSC 123 – 46

Key Idea 2: Controlling Speed
¥ Let’s have a look at the following code below. Obviously, the x’s

increment value controls the speed of the ball.
¥ The speed is just another attribute in your sketch.

¥ The following is the same code above after replacing the
increment value with a speed variable

int x = 25;

void draw() {
background(80);
ellipse(x,100,50,50);
x = x + 1;

}

Slow movement

int x = 25;

void draw() {
background(80);
ellipse(x,100,50,50);
x = x + 3;

}

faster movement

int x = 25;

void draw() {
background(80);
ellipse(x,100,50,50);
x = x + 6;

}

fastest movement

int x = 25, speedX = 1;

void draw() {
background(80);
ellipse(x,100,50,50);
x = x + speedX;

}

Slow movement

int x = 25, speedX = 3;

void draw() {
background(80);
ellipse(x,100,50,50);
x = x + speedX;

}

faster movement

int x = 25, speedX = 6;

void draw() {
background(80);
ellipse(x,100,50,50);
x = x + speedX;

}

fastest movement

COSC 123 – 47COSC 123 – 47

Key Idea 2: Controlling Object’s Speed
¥ Now that we have the speed attribute stored in a variable, you

can control it by updating its value either in draw() or other event
functions.

float x = 25, speedX = 0;
void setup() {

size(800, 200);
}
void draw() {

background(80);
ellipse(x,100,50,50);
//update variables
x = x + speedX;
speedX += .4;

}

Ball gradually
increase its speed

float x = 25, speedX = 0;
void setup() {

size(800, 200);
}
void draw() {

background(80);
ellipse(x,100,50,50);
//update variables
x = x + speedX;

}
void mousePressed() {

speedX = 3;
}
void mouseReleased() {
speedX = 0;

}

Ball only moves when
mouse is clicked

float x = 25, speedX = 0;
void setup() {

size(800, 200);
}
void draw() {

background(80);
ellipse(x,100,50,50);
//update variables
x = x + speedX;
speedX = 0.01 * mouseX;

}

speedX is controlled
by mouseX

COSC 123 – 48COSC 123 – 48

ExerciseExercise

Move Your Wheel!
¥ Create an animation where the speed and rotation of the wheel are

controlled by mouseX.
¥ When mouseX is 0, the wheel freezes.
¥ The higher value mouseX is, the faster the wheel moves to the right while

rotating.

¥ When any key is pressed, the wheel’s location is
reset (far left) and it stops rotation.

¥ Idea: Reuse the code of the wheel presented in last lecture’s notes:
¥ declare two variables: x and dr and initialize both to 0.
¥ Use the two variables to transform your wheel.
¥ Both variables should be updated every frame using mouseX.
¥ Whenever a key is pressed, both variables should be set to 0.

System Variables

COSC 123 – 50COSC 123 – 50

System Variables
¥ We have seen some system variables, such as mouseX and
mouseY, that hold useful values. Here is a longer list of
commonly used system variables:

mouseX,mouseY Mouse location
width,height Sketch size (in pixels)
displayWidth,
displayHeight

Entire screen size (in pixels)

frameCount Number of frames displayed so far.
frameRate the current frame rate.
key The most recent key used on the keyboard. e.g. 'a', 'b', '!', ' ', …
keyCode The code of the most recent key used on the keyboard. Useful for

special keys, e.g. UP, LEFT, SHIFT, ALT, …
keyPressed true or false based on whether a key is pressed.
mouseButton LEFT, RIGHT, or CENTER, based on which mouse button is pressed
mousePressed true or false based on whether mouse is pressed.

COSC 123 – 51COSC 123 – 51

Example

String msg = "You wrote: ";
void setup() {
size(400, 200);
colorMode(HSB);
textSize(26);
noStroke();

}
void draw() {
background(0);
fill(frameCount % 255 , 255, 255); //color changes
text(msg, 10 ,30);
fill(255,255,255,frameCount); //smooth appearance
ellipse(width/2, height/2, 80, 80); //center of sketch

}
void keyPressed() {
msg += key; //read user’s input

}

System Variables to Control Animation
1

¥ This program draws a circle at the sketch center (determined by width &
height) and writes some text on the top-left corner.

¥ The color and transparency are gradually changed using framecount.
¥ The program also reads the user’s input using key and keyPressed().

COSC 123 – 52COSC 123 – 52

Example

System Variables to Make Decisions
1

¥ You wrote code for the following program in a previous class
using mouse-event methods. The same output can be produced
using system variables (simpler code) .

COSC 123 – 53COSC 123 – 53

Example

System Variables to Make Decisions, cont’d
1 (cont’d)

void setup(){
size(200,200);
fill(0,255,0);
stroke(255);
strokeWeight(2);

}
void draw(){
background(0);
ellipse(mouseX,mouseY,40,40);

}
void mousePressed(){
fill(255,0,0);
stroke(255,255,0);
strokeWeight(4);

}
void mouseReleased(){
fill(0,255,0);
stroke(255);
strokeWeight(2);

}

void setup() {
size(200,200);

}
void draw() {
background(0);
if (mousePressed) {
fill(255, 0, 0);
stroke(255, 255, 0);
strokeWeight(4);

} else {
fill(0, 255, 0);
stroke(255);
strokeWeight(2);

}
ellipse(mouseX, mouseY, 40, 40);

}

Simpler code.

Built-in Math Functions

COSC 123 – 55COSC 123 – 55

Mathematical Functions
¥ You have used the math function abs() before to produce an absolute value of a given

number. Here is a list of more functions that you can use in your computations.

Function Example Function Example

abs() d = abs(-4); // 4 max() d = min(2,7); // 7

round() d = round(2.6); // 3 min() d = min(2,7); // 2

floor() d = floor(2.9); // 2 sin() d = sin(PI/6); // 0.5

ceil() d = ceil(2.3); // 3 cos() d = cos(PI/3); // 0.5

pow() d = pow(2,3); // 8 tan() d = tan(PI/4); // 1

sq() d = sq(-3); // 9 asin() d = asin(0.5); // 𝝅/𝟔

sqrt() d = sqrt(9); // 3 acos() d = acos(0.5); // 𝝅/𝟑

dist() d=dist(0,0,3,4);// 5 atan() d = atan(1.0); // 𝝅/𝟒

This one is particularly useful when developing games. We won’t
use it today, but just remember it for future lectures!

COSC 123 – 56COSC 123 – 56

Angles in Processing
¥ Many Processing functions, e.g. trigonometric sin() & cos()

and transformation’s rotate() functions, take an angle
argument in radians.
¥ sin(PI/6) is 0.5
¥ rotate(PI/4) rotates the coordinates by 45 degrees.

¥ degrees() and radians() can be used to convert from
degrees to radians and vise versa.
¥ degrees(PI/2) is 90.
¥ radians(90) is PI/2

¥ Note: the inverse of the trigonometric functions, i.e. asin(),
acos(), atan(), take any value from −∞ to ∞ and output the
corresponding angle in radians.
¥ e.g. asin(0.5) is PI/6 (i.e. 𝜋/6)

COSC 123 – 57COSC 123 – 57

Example

Computing Motion Paths
2

This code moves a ball from left to right
along a sinusoidal path.

The idea:

¥ 1) x is incremented by 1 after every frame,
moving the ball from left to right.

¥ 2) for every x value, y is computed using
the following expression which produces 2
full sinusoidal waves:

𝑦 = 30 ' sin(
𝑥

𝑠𝑘𝑒𝑡𝑐ℎ 𝑤𝑖𝑑𝑡ℎ
' 4 ' 𝜋)

¥ To make things easier, the coordinate is
translated so that the origin (0,0) is at the
middle of the left edge

float x=0, y=0;
void setup(){
size(200,200);
background(0);
noStroke();

}
void draw(){
translate(0,height/2);
y = 30 * sin(x*4*PI/width);
ellipse(x, y, 5, 5);
x++;

}

(0,0)
1

2 " 𝜋

(0,0)
30

2 " 𝜋

𝑦 = sin(
𝑥

𝑠𝑘𝑒𝑡𝑐ℎ 𝑤𝑖𝑑𝑡ℎ
" 2 " 𝜋)

𝑦 = 30 % sin(
𝑥

𝑠𝑘𝑒𝑡𝑐ℎ 𝑤𝑖𝑑𝑡ℎ % 4 % 𝜋)

COSC 123 – 58COSC 123 – 58

Example

Nice Idea for Games!
3

¥ The motion paths for different
items in a game could be
computed using the same idea
presented in the previous
example.

¥ The code shown is very similar
to the previous slide, except that
it moves 3 triangles (could be
enemy ships in a side-scrolling
game) along the same
sinusoidal path.

float x1=0,y1=0,x2=-20,y2=0,x3=-40,y3=0;
void setup(){
size(400,200); noStroke(); fill(255);

}
void draw(){
background(0);
translate(0,height/2);
//first spaceship
y1 = 30 * sin(x1*6*PI/width);
triangle(x1, y1-5, x1, y1+5, x1+10, y1);
x1++;
//second spaceship
y2 = 30 * sin(x2*6*PI/width);
triangle(x2, y2-5, x2, y2+5, x2+10, y2);
x2++;
//third spaceship
y3 = 30 * sin(x3*6*PI/width);
triangle(x3, y3-5, x3, y3+5, x3+10, y3);
x3++;

}

COSC 123 – 59COSC 123 – 59

ExerciseExercise

Paths Defined by an Equation
¥ Do you understand this animation?

¥ What if we want to have another group of ships going in the
opposite direction or following a different path? How about you
also add the player’s own
spaceship which is controlled
by the mouse?

1

COSC 123 – 60COSC 123 – 60

Lecture Activity Task

Using System Variables (based on the textbook)

¥ Write code to produce the following sketches so that the code
for all three is EXACTLY the same except for the size()
statement.

¥ That is, the shapes must resize themselves relative to the
window size. No matter what you specify for size(), the result
should look identical!

¥ Hint: use width and height to determine the shapes location and
size.

size(200,200) size(100,200) size(300,200)

COSC 123 – 61COSC 123 – 61

Lecture Activity Task

Analogue Clock
¥ Write code to animate the seconds hand in a

clock

¥ How about we now add the minutes and the
hours hands?

(0,0)

(x,y)

q
r

𝜃 = second() ∗
𝑃𝐼
30

−
𝑃𝐼
2

